
A sneak peek
into* Rust

Martijn Gribnau

github.com/foresterre2022 // CC BY 4.0

Happy times!

* https://doc.rust-lang.org/std/convert/trait.Into.html

A sneak peek
into Rust

Happy times!

Ferris, the unofficial Rust mascot, designed by Karen Rustad Tölva

So, what is Rust … (to me)?

Rust isn't "if I had asked people what they wanted,
they would have said: faster horses"
 - Henry Ford (Tris from Lost Terminal Podcast describing Rust)• Rust is not another C or C++

• But borrows a lot of syntax of C/C++/Java

• Largely targets the same market

• Rust is not Go

• Both relatively new, but very different

• No null

• …

• But, builds on top of many concepts from other languages

A different beast, … yet familiar

Rust is: The standard introduction

• Blazingly fast systems programming language

• Memory safety

• No dangling pointers

• RAII like destructors

• Safe, and relatively easy parallelization

• No data races

• Ownership & the borrow checker

*1 https://doc.rust-lang.org/stable/book/ch04-02-references-and-borrowing.html?highlight=dangling#dangling-references

*1

A quick language tour

• Time to open my IDE

Superpowered enums

• Not just a number or string

• Tagged unions, sum types

#[derive(Debug)]

enum Type {

 Num,

 Bool,

 List(Box<Type>),

 Func(Box<Type>, Box<Type>),

}

Rust is: a language of expression(s)

TypeScript

Rust

Rust is: the compiler is your friend
* Not just errors, but helpful error messages.

a language where

Rust is: a language where types have power

• Result<T,E> and Option<T>, or make your own :)

• An example: error handling

• Generics

• Monomorphization

• Traits

Error handling with Result<T, E> (1/2)

• Errors are 'just' types

• Error handling is not an after

thought

Error handling with Result<T, E> (2/2)

• Errors are 'just' types

• Error handling is not an after thought

Generics

• Generics

• Monomorphization

Traits (1/2)

• Shared behaviour

1

2

3

4

Traits (2/2)

• Shared behaviour

• Super charged interfaces

1

2

Rust is: testing first (1/3)

• Inline unit tests #[test]

Rust is: testing first (2/3)

• Inline unit tests #[test]

• Integration tests

Rust is: testing first (3/3)

• Inline unit tests #[test]

• Integration tests

• Doc tests

Rust is: modern tooling

• Cargo: Package & build tool

• Crates.io: packaging ecosystem

• Clippy: linter

• Rust-analyzer

• Intellij Rust

Rust is: documentation included

• Docs.rs: publicly hosted by the Rust foundation

• All crates.io packages have at least type documentation

• But usually, more

• Proper fuzzy search

• Search by type signature

Rust is: free, accessible learning resources

• The book

• The std library reference

• Rustlings

• Rust by example

• The cargo, rustdoc, edition, … books

Rust is: a liked language

• 5+ years in a row, the most liked language in the Stackoverflow Developer survey

https://survey.stackoverflow.co/2022/#most-loved-dreaded-and-wanted-language-love-dread

Rust: a production-ready language

Extra credits slide

Ferris: https://rustacean.net/

	Slide 1: A sneak peek into* Rust
	Slide 2: A sneak peek into Rust
	Slide 3: So, what is Rust … (to me)?
	Slide 4: Rust isn't
	Slide 5: Rust is: The standard introduction
	Slide 6: A quick language tour
	Slide 7: Superpowered enums
	Slide 8: Rust is: a language of expression(s)
	Slide 10: Rust is: the compiler is your friend
	Slide 11: Rust is: a language where types have power
	Slide 12: Error handling with Result<T, E> (1/2)
	Slide 13: Error handling with Result<T, E> (2/2)
	Slide 14: Generics
	Slide 15: Traits (1/2)
	Slide 16: Traits (2/2)
	Slide 17: Rust is: testing first (1/3)
	Slide 18: Rust is: testing first (2/3)
	Slide 19: Rust is: testing first (3/3)
	Slide 20: Rust is: modern tooling
	Slide 21: Rust is: documentation included
	Slide 22: Rust is: free, accessible learning resources
	Slide 23: Rust is: a liked language
	Slide 24: Rust: a production-ready language
	Slide 25: Extra credits slide

